Entertaining while Educating

 

ALL ABOARD!

animatronic conductor

Everybody is getting information faster, trying to absorb it, learn from it, but it can be too much! With attention spans shrinking it becomes very difficult to help somebody learn history without poking them with a stick every five seconds.

We at Custom Entertainment Solutions do not endorse poking people with sticks.

Instead, we open creative, hungry minds to new information using animatronics!

The City of Belton, in conjunction with the local history museum housed in a 100-year-old train station, wanted to bring in more guests to view their railroad exhibit and assist in the learning of local history.

animatronic train conductor

For example, the history of trains in the US is vast and contains many details that train aficionados hold dear. To tell a few minutes of detailed history to a child can be a challenge. But to have an animatronic robot tell it they become fascinated! Everybody is entertained. The best part: the story teller (animatronic) always tells it perfectly!

robotic train conductor

 From the museum, “We are thrilled with our animatronic robot. It was so precious to see the children making him come to life with the touch of a button.  It scared quite a few until their parents assured them that he was perfectly harmless.  You can see the confusion and trepidation on some of their faces, but they definitely warmed up to him after a few minutes. There were older people, too, who were enthralled by him and listened to all the stories he told.  One older gentleman, as he walked away, said, “Well, I’ll be!  That’s amazing!” Many of the older folks also recognized Paul Brown’s voice from his radio and TV newscasts, so they had an added connection to the robot.  He felt, to them, as if he were an old friend.”

You can see him in the new museum HERE

animatronic robot

This is a custom animatronic train conductor, but…

What would you like?

 

 

Robotic Hands…EVERYWHERE!!!

 

Plastic, rubber, titanium, aluminum, glass, cement, all of these and many more materials can by 3D printed. You have at least 30 different types of 3D printing from FDM, SLA, CLIP, SLS, the list goes on and on. You can download FREE things to print! You can have it outsourced. But what most will not tell you: it takes hours, sometimes days, to print a part. Once printed that part has to be post-processed. Some call it “body shopping”. Basically you sand, you dissolve, you fill, you sand, you prime, you sand, you prime, etc. etc. If you bid out a simple part for a good quality print you will see the cost of printing…that said…we have many 3D printers in this studio! Of course it has its place, and sometimes they are running non-stop for days!

dynhand23d printed hand

The thing is, so are our CNC mills and lathes at the same time. So are our band saws, belt sanders, Foredoms (rotary tools), vac forming tables, and more.

The point is this: we use whatever process is most efficient to produce the best quality part.

We design outer robot shell shapes and suit parts, those scream for 3D printing and composite work. Some organic sculpts from zbrush are perfect for 3D printing. But why would you spend hours, maybe days, 3D printing something you can make on a CNC mill in a few minutes out of a solid, engineering grade aluminum?

This is exactly the approach we took when designing the new Mecha X Robotic Hand.

RC hand

The frame needs to be strong, have precise holes that will not wear with time, and be stiff enough to be very kinematically stable while having a wide range of motion. What is the best material for this: ALUMINUM! The CNC mill is right here, it takes minutes to program a simple part and another few minutes to have a very strong, reliable part that we can make beautiful through anodization. It will last hundreds of years!

animatronic hand

But many people want to modify, “makers” and research companies alike. Typically fingertips need to handle different sensors and different styles of gripping things.

Why not use one of the best methods on the planet to make ANY shape you want to add to the Mecha X Robotic Hand…3D printing!

Most people have at least a cheap FDM printer, why not give you the creative freedom to make perfectly-fitting add-ons to your Mecha X Hand? This hand comes with 3 different designs, all ready to print on your FDM, SLA, SLS, whatever printing method you want. Of course you can design your own fingertips or pads, add sensors, do whatever you like! Now you have a strong, stable robotic hand to add your own touch to it.

LED

animatronic handrobot hand

This is exactly what team “Night’s Watch”, comprised of computer science engineering students in Tunisia, did when they participated in “The Microsoft Imagine Cup 2016”. They needed a prosthetic hand but could not afford the traditional prosthetic hand investment. 3D printing the entire structure was not a good solution as this hand needed to be strong and lightweight. They also wanted to customize the hand to take inputs from a “Myo” arm band. They succeeded in controlling the Mecha X Hand from an amputee’s forearm and won the competition!

microsoft imagine award

amputee

The Mecha X Robotic Hand platform is here. It is ready for you to customize it and make it your own.

What would you like?

Animatronic Bloody Hand- Chop!

 

Animatronics are not always just about making creatures or robots…

…sometimes they are necessary to allow a director to CUT OFF A HAND!

 

 

Partnering with the amazing special makeup effects studio Cosmesis and the very talented Clinton Aiden Smith this special effect will be in the movie “Zulu” ( starring Orlando Bloom, Djimon Hounsou, and more )

The entire effect is one long continuous shot. Hence the need for an animatronic arm to be used from the beginning of the shot, look at the storyboard:

 

To be a small part of what will be an excellent movie with a great cast is an honor for us. Thank you Mr.Smith!

 

Contact us if you would like to know more

 

Animatronic Top Secret Agent

 

James Bond.

Stirling Mallory Archer (codename: Duchess).

We love secret agents.

The romance of exotic locations, the excitement of the chase, the awesome gadgets.

So we have created a Top Secret Agent animatronic!

Your own Top Agent to break the ice with gorgeous Bond-girls! He also can stand guard at your party, club, office, he will work anywhere there may be a chance for adventure!

 

This Top Agent randomly raises his drinking arm (or whatever you want that hand to hold, both hands are pose-able) and randomly looks left and right to check for danger.

Power? No problem! 110 VAC US / Japan household power or EU standard 220 VAC is fine as well.

 

Hang on…what about your Bugatti? Is it protected while you fill it up at the petrol station? At night? You can actually take Top Agent’s torso off his legs and put him in your car. He plugs into your lighter-socket.

 

At home, in your car, your Top Agent is always on guard and ready to entertain, protect, and seduce women! Just plug him in.

Contact us if you would like to know more

 

Animatronic Heads for Everybody!

 

We are finding that more and more students, kids, parents, people from nearly all age groups want to be involved in some kind of animatronic. Some want to play with animatronic robotic eyes, some want an arm, some a hand, and some want a whole robot.

But there is one barrier common to all:

Not many can afford animatronics.

The transition from a “toy” like the cool animatronic monkey head from years back to a full-on advanced PIDD controlled electric, hydraulic, or pneumatic animatronic robot is a HUGE leap. But some have such a passion for having an animatronic that they have bought that monkey, for example, hacked into it, and started re-wiring, re-programming, re-building the whole thing! That is a LOT of work!

We recognize the need, and know that right now EVERYBODY is on a budget. So why not make an in-between? An animatronic platform that you can immediately play with out of the box BUT also encourages you to get  in the guts of it, make new facial motions with more servos, plug in ANY controller you want and program it with simple codes or even stretch it to use complex computer vision algorithms.

 

Here it is: Mecha Hitsu Gen2

An Open-Source Animatronic Platform

 

Many skins are available for one animatronic skull

 

5 years in development and leveraging technologies and manufacturing processes we have recently discovered we have a way of giving you what you want at a decent price.

PLUS you can change the skins! No kidding. One skull, many faces.

Those of you out there making animatronics at a professional level know that we typically go the other way: start with the sculpt, then to the underskull, then mechanize. This is different, but the Mecha Hitsu Gen2 can be put to work immediately in your theme park, Halloween display, research labs, etc. No huge overhead costs, no long lead-time waiting for the custom sculpt, molding, scanning, modeling, cnc’ing, assembly and programming of a Custom Android.

We will be posting videos of the Mecha Hitsu Gen2 from clients that have made exceptional animatronic displays, research, demonstrations and more using their Mecha Hitsu Gen2 platform.

This is only the beginning…

DYN Hand Gen1 – Robotic Hand

 

The human hand is one of the most complex appendages in the world. At least 29 small bones, 34 muscles, and about 123 ligaments.

Now, make me a robot hand.

Simple?

There have been thousands of designs of “robot” hands spanning centuries. Humans trying to replicate their own functionality with mechanical devices, biomimicry. Some designs boil all the functionality and complexity of a hand into only a few actuators (or motor, servo, one device that acts as a muscle would). A simple example would be a homemade cable hand. Some designers have taken an extreme route using the hand as a gigantic car crushing form of entertainment as “The Hand of Man” does. Some have pushed the extreme limits of today’s technology to make, as much as possible, a robotic hand that has all the degrees of freedom that a real human hand does, like the ongoing DEXMART project or even Shadow Robotic’s Hand .

What we take for granted in our own human hands becomes painfully apparent as soon as you start to design one.

How many degrees of freedom do I need? What exact positions should it be able to achieve? How much force do I need at each joint? How am I going to transmit the actuators motion all the way down to a small fingertip?

Most importantly: how much is this going to cost???

Because there are those of us out there that do not have  $100,000 sitting in our bank accounts just taking up space, and we at the same time do not want a $50 piece of copper tubes and wire from a hardware store fashioned into a “hand”. There needs to be an in-between.

The Custom Entertainment Solutions’ “DYN Hand Gen1” has fit this bill.

DYN Hand Gen1

DYN Hand Gen1

It does capture 11 degrees of freedom most important to research teams.

It does have a skin.

And most importantly it is affordable.

Controlled by simple PWM inputs and powered by a single 6 VDC supply this hand can be immediately put to use by even novice roboticists. If you have programmed motion for a hobby servo you can program for the industrial strength servos inside the DYN Hand Gen1.

I personally look forward to what research this hand will be part of…

DYN Hand

DYN Hand

Mecha ToMoMi Robotic Head, The Next Mouse

 

Ever since Douglas Englebart developed the fist mouse prototype in 1963, people have tried to find better ways to interact with computers. Nearly 50 years later, almost all work done on a computer is still done with a mouse.

Of course, it would be nice to simply talk to a computer screen and have it not only type for us but recognize commands. This is already happening (and has been for many years now with companies like Nuance, even in robotic toys like Pleo who can recognize voice commands and react according to internal software).

What is the next step?

Bioloids, bipedal robots, recent major advances in the number and complexity of robots that walk and are capable of existing in a home environment, not just the laboratory.

Talking AT a robot is one way, as mentioned above, to control it. But what about talking WITH a robot? What would be necessary for you, as a human, to understand what the robot is trying to tell you?

A lot of work has been done in this area of human-machine interface. Now that we have the processing power, computer vision systems, and extremely talented research teams the direction is logical: Emotions. Expressions. A Face, not just a screen.

Mecha ToMoMi Head

Mecha ToMoMi Head

Therein lies the challenge. Animatronic faces have been around since Walt Disney and his Imagineering team created the first audio-animatronic figure, Abraham Lincoln, for the 1694 New York World’s Fair. While it was an amazing leap in entertainment and education, the face was very simplistic. Mouth open / close, eyes left/right, and so on.

To actually create emotions is not simple. There are roughly 52 muscles in a human face that create subtle motions that, as it turns out, are very critical to re-create in a robot face. There are many attempts at doing this. The issue lies in the fact that if you are trying to create absolute realism and miss even a small, subtle part of that motion it becomes terrifying, not entertaining. And certainly NOT something you would want to be next to.

The solution is the Mecha ToMoMi head from Custom Entertainment Solutions. Right now Technion Institute (having the talent and standards exceeding even M.I.T.) is using the ToMoMi head to study human interactions to a robot face. The head is sculpted intentionally “fake”, as opposed to trying to be absolutely realistic. The face is perfectly white, also intentional to move farther away from a “real” human face. The back of the head is open, not covered in hair or some other attempt at realism. Using this approach, scientists can program in emotions easily and avoid the “uncanny valley”. The ultimate result is a very emotive head, with CMOS supermicro color video cameras in each eye, that is fit for a bipedal robot.

No more mouse.

No more talking AT the robot.

The future is talking WITH a robot that is pleasant to look at and interact with.

Stay tuned….

The New Frontier of Custom Robotics

 

The world is always changing.

So is the enormous field of robotics.

Not long ago you were privileged to have an MIT handyboard or a Turtle or maybe even a sumo-bot project in your hands. Saying these words a few years ago to most crowds would cause a glazed stare from the crowd as if lobsters were crawling from your ears.

The HRP-4C - Japanese Supermodel Robot

The HRP-4C - Japanese Supermodel Robot

Now we have bioloids, walking, fighting robots fully functioning humanoid robots that kids are familiar with and more importantly, excited about.

A new frontier has opened up because of this: Custom Robotics.

Now that robotics have come to be a household word, it is fantastic that also at the same time companies have been created that can customize or completely build from scratch exactly what you want. And fast. And not at DARPA-level budgets!

A great new example is the Willow PR2 robot. From high-level thinkers involved with Google and Stanford University has come this latest iteration of a truly open-source software personal robot. This is an amazing step towards custom robotics. Not only can the researcher / end user dive into the mechanics of the robot BUT they are also able to utilize its many sensors and motors through an open portal into the robot’s code. It can become what you make it, behaviorally speaking.

But what about custom mechanisms? What about custom “skins”, panels, aesthetic but important features of a “personal robot”? This is where those companies skilled in special effects and prosthetics can play an important role… viagra

The Evolution Of Robotics

 

In this new era where we see robots on TV making our cars, cleaning our floors, doing life-critical surgery, and “simply” zapping our corneas with a laser we have managed to slip into a state where “robots” are just another tool to help us.

Those still feeling let down that we don’t have flying cars just yet haven’t stopped and looked around: the science fiction dream of robots being in our households, military soldiers, factory workers, and more is HAPPENING!

And it is progressing fast…

Asimo Development Process

Asimo Development Process (click to enlarge)

Look around the world. Asimo, a breakthrough in humanoid technology. I watched it run across a stage years ago now and had to stop myself from thinking “aaahhhhh, that’s just a kid in a suit”. No, this robotic masterpiece is emulating a human. Some would say – perhaps if you put an “animatronic” skin on this you could call this a very, very expensive animatronic.

Not ten years ago in a 4th year mechatronics class Kam Leang taught us to program a MIT HandyBoard microcontroller, hack ultrasonic rangefinders from Polaroid cameras, and more to create a truly autonomous robotic hockey player. Hit a button, select defense or offense programs, and play two on two on a 8 foot long wood floor ‘rink’ with goals at magnetic north and south (so our hacked mini-van digital compasses could give us feedback to allow us to score on the OTHER guys goal!).

Now this technology is “simple”. True, there was a lot of mid-level electrical engineering involved and more than 10 digital and 8 analog inputs to manage a 2 motor differential drive H-bridge. But now we can simply go to “The Robot Shop” online and buy a kit / controller that has most all that in it. With instructions.

Aldebaran NAO

Aldebaran NAO (click to enlarge)

…Or simply buy a full humanoid biped to play around with. The Aldebaran NAO is a perfect example. It even comes in a well-designed plastic skin.

The Wonderful World of Animatronics and Robotics

 

Animatronics and Robotics… In most minds these are two completely different topics. “Animatronics” used to refer to a mechanical, perhaps mechatronic “gag” or puppet that had some mechanisms in it. True, it is a large and very loose definition.

From complex large scale hydraulics and extremely sensitive control systems for large dinosaurs to “Bun Raku” rod puppetry I have seen (and been responsible for making) a lot of “animatronics”.

Bun Raku

Bun Raku - Traditional Japanese Puppet Theater

“Robotics” we think of usually as a highly complex specialized system that involves system architecture, control theory, electrical engineering, mechanical engineering, systems integration, and many times YEARS to produce something that is not presented to us as a hobby kit.

Take another look…

Custom Entertainment Solutions

Custom Entertainment Solutions

Roboticists themselves have a hard time nailing down the term. Wikipedia defines it as “The word robot can refer to both physical robots and virtual software agents, but the latter are usually referred to as bots.” [23] There is no consensus on which machines qualify as robots but there is general agreement among experts, and the public, that robots tend to do some or all of the following: move around, operate a mechanical limb, sense and manipulate their environment, and exhibit intelligent behavior — especially behavior which mimics humans or other animals. “

How exactly does this differ from “animatronics” as we know them today?

In the custom animatronic designs we create at Custom Entertainment Solutions nearly all of the systems require at least one microprocessor to move many mechanical limbs to emulate a living creature. Or even control a robotic figure.

The future will produce not just more “robots”, but interactive advanced mechatronic creations that will emulate us. Androids, simulacrum, bots, automatons, “skin jobs”, all good names. I propose a new one:

“Animatronic Robotics”